domingo, 27 de setembro de 2009

Hemofilia





Hemofilia
Hemofilia - é o nome de diversas doenças genéticas hereditárias que incapacitam o corpo de controlar sangramentos, uma incapacidade conhecida tecnicamente como diátese hemorrágica. Deficiências genéticas e um distúrbio autoimune raro podem causar a diminuição da atividade dos fatores de coagulação do plasma sanguíneo, de modo que comprometem a coagulação sanguínea; logo, quando um vaso sanguíneo é danificado, um coágulo não se forma e o vaso continua a sangrar por um período excessivo de tempo. O sangramento pode ser externo, se a pele é danificada por um corte ou abrasão, ou pode ser interno, em músculos, articulações ou órgãos. É a falta dos fatores de coagulação - a hemofilia A tem falta do fator de coagulação VIII, a hemofilia B tem falta do fator de coagulação IX e a hemofilia C tem falta do fator de coagulação XI. A hemofilia A é a mais comum, ocorrendo em 90% dos casos.


Genética :


A hemofilia, exceto sua variante "C", é referida como uma doença recessiva ligada ao cromossomo X ("doença ligada ao sexo"), o que significa que o gene defeituoso está localizado no cromossomo feminino ou cromossomo X.
Um
homem possui um cromossomo X e um Y. Uma mulher, dois X. Como o defeito está no cromossomo X, é raro uma mulher que carregue o defeito, pois seu outro cromossomo X pode produzir os fatores de coagulação necessários. Entretanto, o cromossomo Y do homem não tem genes para os fatores de coagulação, portanto, se um homem apresentar defeito no cromossomo X, ele desenvolverá a doença.
Desde que um homem recebe o seu cromossomo X da mãe, o filho de uma portadora silênciosa tem 50% de chance de ter a doença e 50% de chance de ser sadio. Uma mulher para desenvolver a doença precisa receber dois cromossomos X defeituosos, um do pai e outro da mãe. Por isso a doença é mais comum em homens do que em mulheres. Entretanto há a possibilidade da mulher portadora silênciosa desenvolver uma hemofilia leve devido a
lionização (inativação de um cromossomo X).

Tratamento:
Não há cura para a hemofilia. Controla-se a doença com injeções regulares dos fatores de coagulação deficientes. Alguns hemofílicos desenvolvem anticorpos (chamadas de inibidores) contra os fatores que lhe são dados através do tratamento. severa:pac. Deve receber produtor do plasma para evitar ou controlar episódios de sangramento durante toda sua vida. O nível dos fatores tem q ser elevado pra +/- 30% Preparações terapêuticas pro fator VIII: CRIOPRECIPITADO e concentrado liofilizado de fator VIII comerciais. O concentrado de fatot IX existe sob a forma de um ‘complexo de protrombina concentrado” lifilizado.. Leve: terapeutica de reposição apenas depois de um trauma ou para evitar sangramento pós-operatório.



domingo, 8 de fevereiro de 2009

Engenharia Genética


Engenharia genética e modificação genética são termos para o processo de manipulação dos genes num organismo, geralmente fora do processo normal reprodutivo deste. Envolvem frequentemente o isolamento, a manipulação e a introdução do ADN num chamado "corpo de prova", geralmente para exprimir um gene. O objetivo é de introduzir novas características num ser vivo para aumentar a sua utilidade, tal como aumentando a área de uma espécie de cultivo, introduzindo uma nova característica, ou produzindo uma nova proteína ou enzima.
Exemplos são a produção de insulina humana através do uso modificado de bactérias e da produção de novos tipos de ratos como o OncoMouse (rato cancro) para pesquisa, através de re-estruturamento genético. Já que uma proteína é codificada por um segmento específico de ADN chamado gene, versões futuras podem ser modificadas mudando o ADN de um gene. Uma maneira de o fazer é isolando o pedaço de ADN contendo o gene, cortando-o com precisão, e reintroduzindo o gene em um segmento de ADN diferente.
A engenharia genética oferece a partir do estudo e manuseio bio-molecular (também chamado de processo biológico e molecular), a obtenção de materiais orgânicos sintéticos. Os processos de indução da modificação genética permitiram que a estrutura de seqüências de bases completas de DNA fossem decifradas, portanto facilitando a clonagem de genes.
A clonagem de genes é uma técnica que está sendo largamente utilizada em microbiologia celular na identificação e na cópia de um determinado gene no interior de um organismo simples empregado como receptor, uma bactéria, por exemplo. Este processo é muito importante na síntese de alguns sub-produtos utilizados para o tratamento de diversas enfermidades.


Áreas da Genética

Genética clássica

A Genética clássica consiste nas técnicas e métodos da genética, anteriores ao advento da biologia molecular. Depois da descoberta do código genético e de ferramentas de clonagem utilizando enzimas de restrição, os temas abertos à investigação científica em genética sofreram um aumento considerável. Algumas ideias da genética clássica foram abandonadas ou modificadas devido ao aumento do conhecimento trazido por descobertas de índole molecular, embora algumas ideias ainda permaneçam intactas, como a hereditariedade mendeliana. O estudo dos padrões de hereditariedade continuam ainda a ser uma ferramenta útil no estudo de doenças genéticas, como a Neurofibromatose.
Genética molecular

A genética molecular tem as suas fundações na genética clássica, mas dá um enfoque maior à estrutura e função dos genes ao nível molecular. A genética molecular emprega os métodos quer da genética clássica (como por exemplo a hibridação) quer da biologia molecular. É assim chamada para se poder distinguir de outros ramos da genética como a ecologia genética e a genética populacional. Uma área importante dentro da genética molecular é aquela que usa a informação molecular para determinar os padrões de descendência e daí avaliar a correta classificação científica dos organismos: chamada sistemática molecular.
O estudo das características herdadas e que não estão estritamente associadas a mudanças na sequência do DNA dá-se o nome de epigenética.
Alguns autores defendem que a vida pode ser definida, em termos moleculares, como o conjunto de estratégias que os polinucleótidos de RNA usaram e continuam a usar para perpectuar a eles próprios. Esta definição baseia-se em trabalho dirigido para conhecer a origem da vida, estando associada à hipótese do RNA.
Genética populacional, genética quantitativa e ecologia genética

A genética populacional, a genética quantitativa e a ecologia genética são ramos próximos da genética que também se baseiam nas premissas da genética clássica, suplementadas pela moderna genética molecular.
Estudam as populações de organismos retirados da natureza mas diferem de alguma maneira na escolha do aspecto do organismo que irão focar. A disciplina essencial é a genética populacional, que estuda a distribuição e as alterações das frequências dos alelos que estão sob influência das forças evolutivas: selecção natural, deriva genética, mutação e migração. É a teoria que tenta explicar fenómenos como a adaptação e a especiação.
O ramo da genética quantitativa, construído a partir da genética populacional, tenciona fazer predições das respostas da selecção natural, tendo como ponto de partida dados fenotípicos e dados das relações entre indivíduos.
A ecologia genética é por sua vez baseada nos princípios básicos da genética populacional, mas tem o seu enfoque principal nos processos ecológicos. Enquanto que a genética molecular estuda a estrutura e função dos genes ao nível molecular, a ecologia genética estuda as populações selvagens de organismos e tenta deles recolher dados sobre aspectos ecológicos e marcadores moleculares que estes possuam.
Genómica

A genómica é um desenvolvimento recente da genética. Estuda os padrões genéticos de larga escala que possam existir no genoma (e em todo o DNA) de uma espécie em particular. Este ramo da genética depende da existência de genomas completamente sequenciados e de ferramentas computacionais desenvolvidas pela bioinformática que permitam a análise de grandes quantidades de dados.

Génetica

Genética (do grego genno; fazer nascer) é a ciência dos genes, da hereditariedade e da variação dos organismos. Ramo da biologia que estuda a forma como se transmitem as características biológicas de geração para geração. O termo genética foi primeiramente aplicado para descrever o estudo da variação e hereditariedade, pelo cientista Wiliam Batesson numa carta dirigida a Adam Sedgewick, da data de 18 de Abril de 1908.
Os humanos, já no tempo da pré-história utilizavam conhecimentos de genética através da domesticação e do cruzamento seletivo de animais e plantas. Atualmente, a genética proporciona ferramentas importantes para a investigação das funções dos genes, isto é, a análise das interacções genéticas. No interior dos organismos, a informação genética está normalmente contida nos cromossomos, onde é representada na estrutura química da molecula de DNA.
Os genes codificam a informação necessária para a síntese de proteínas. Por sua vez as proteínas influenciam, em grande parte, o fenótipo final de um organismo. Note-se que o conceito de "um gene, uma proteína" é simplista: por exemplo, um único gene poderá produzir múltiplos produtos, dependendo de como a transcrição é regulada.
História

Em 1864, Gregor Mendel estabeleceu pela primeira vez os padrões de hereditariedade de algumas características existentes em ervilheiras, mostrando que obedeciam a regras estatísticas simples. Embora nem todas as características mostrem estes padrões de hereditariedade mendeliana, o trabalho de Mendel provou que a aplicação da estatística à genética poderia ser de grande utilidade. Desde essa altura, padrões mais complexos de hereditariedade foram demonstrados.
A partir da sua análise estatística, Mendel definiu o conceito de
alelo
como sendo a unidade fundamental da hereditariedade. O termo "alelo" tal como Mendel o utilizou, expressa a ideia de "gene", enquanto que nos nossos dias ele é utilizado para especificar uma variante de um gene.
Só depois da morte de Mendel é que o seu trabalho foi redescoberto, entendido (início do século XX) e lhe foi dado o devido valor por cientistas que então trabalhavam em problemas similares.
Mendel não tinha conhecimento da natureza física dos genes. Atualmente sabemos que a informação genética está contida no DNA (alguns
vírus têm a informação genética contida em RNA). A manipulação do DNA pode alterar a hereditariedade e as características dos organismos.

Síndrome de Warkany

A síndrome de Warkany ou trissomia 8 é uma anomalia cromossômica, descoberta pelo pediatra austríaco-estadunidense Joseph Warkany.

Caracteristicas
A síndrome de Warkany se caracteriza pelo comprometimento do desenvolvimento das estruturas mentais, conformação facial relativamente comum entre os portadores, rótulas ausentes ou displásicas, contrações espasmódicas, sulcos nas plantas dos pés e nas palmas das mãos o que provoca a postura distintiva anormal do dedo do pé, anomalia vertebral, pélvis estreito, anomalias ureteral-renal, ou outras anomalias.